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a b s t r a c t

Quantitative information from multi-dimensional NMR experiments can be obtained by peak volume
integration. The standard procedure (selection of a region around the chosen peak and addition of all val-
ues) is often biased by poor peak definition because of peak overlap. Here we describe a simple method,
called CAKE, for volume integration of (partially) overlapping peaks. Assuming the axial symmetry of
two-dimensional NMR peaks, as it occurs in NOESY and TOCSY when Lorentz–Gauss transformation of
the signals is carried out, CAKE estimates the peak volume by multiplying a volume fraction by a factor
R. It represents a proportionality ratio between the total and the fractional volume, which is identified as
a slice in an exposed region of the overlapping peaks. The volume fraction is obtained via Monte Carlo
Hit-or-Miss technique, which proved to be the most efficient because of the small region and the limited
number of points within the selected area. Tests on simulated and experimental peaks, with different
degrees of overlap and signal-to-noise ratios, show that CAKE results in improved volume estimates. A
main advantage of CAKE is that the volume fraction can be flexibly chosen so as to minimize the effect
of overlap, frequently observed in two-dimensional spectra.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction peaks, and introduces two kinds of systematic errors. One is due
NMR spectra can provide quantitative analysis of a sample, and
a standard one-dimensional (1D) 1H NMR spectrum is often used
to obtain a reliable evaluation of peaks. However, as the complex-
ity of the sample increases, resonance overlap becomes a serious
problem that easily degrades the accuracy of the analysis, and
two-dimensional (2D) NMR data are required to gain sufficient dis-
crimination of resonances. Quantification of NMR spectra is also
fundamental in the new emerging field of metabolomics/metabo-
nomics [1,2] and in the structure and dynamics of proteins in solu-
tion [3]. This widespread requirement of deriving quantitative
information from NMR data has prompted the need to find meth-
ods for accurate and precise integration procedures both for 1D
and 2D spectra. This paper describes a new simple method for peak
volume integration in 2D spectra, which appears to be particularly
suited for overlapping peaks. Quantitative information in NMR
spectra is brought by peak areas [4]. Two methods of peak integra-
tion are used: direct summation of spectral data points and peak
parameter search by curve fitting. In the absence of a model for
the peak shape, direct summation appears to be the only practical
technique. It is not, however, adaptable to (partially) overlapping
ll rights reserved.
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to the approximation caused by the assimilation of the integral
of a continuous function with a finite sum [5]; the second one is
caused by the parts of the peaks that are left outside of the integra-
tion range [6].

Ideally, an efficient integration method should be applicable
even when in presence of peak overlap or artifacts. Many of the
available NMR processing and analysis packages achieve volume
integration by direct summation of all data points within a polyg-
onal bounding the peak. This procedure requires a reliable defini-
tion of the peak area: the circling should be as large as possible
to enable for a complete integration, but also small enough to min-
imize inclusion of artifacts (baseplane rolls, t1 noise, tails of other
peaks). As such, the idealized procedure appears to be restricted
to well-resolved peaks. In automated protocols, a possible way to
define the area integration makes use of the observation that the
slope of a peak height decreases monotonically with the distance
to the peak center, at which point it approximates zero [7,8]. A
similar approach defines the peak integration area using an itera-
tive region-growing algorithm [9–11], which recognizes all data
points that are part of a given peak, and the integration is per-
formed on a user-defined threshold level. This procedure works
quite satisfactorily even for overlapping peaks, as long as the peak
maxima are visibly resolved and therefore recognizable by the
peak-picking procedure. In a different approach, the peaks are fit-
ted by a set of reference peaks defined by the user [12–14]. In order
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to obtain accurate line shapes and integrals in one dimension, it is
necessary to apply a non-linear curve-fitting procedure [4,15].
Although this protocol is probably best suited in cases where peaks
strongly overlap, it hinges on the careful definition of suitable ref-
erence peaks and selection of initial fitting parameters by the user.

A general approach for peak integration would be to exploit the
peak symmetry as a criterion to evaluate the peak volume. Symme-
try considerations have previously been used for pattern recogni-
tion in 2D NMR spectroscopy [16], and only rarely for the
analysis of in-phase peaks as in NOESY and TOCSY experiments.
The program AUTOPSY used symmetry for automated peak-pick-
ing in multi-dimensional NMR spectra of proteins [17]. Here we
propose CAKE, a novel integration method based on peak symme-
try. After a 2D Lorentz–Gauss time-domain filtering, the spectral
lines are converted into Gaussian lines, therefore presenting a
cylindrical or elliptical symmetry. By assuming the vertical axial
symmetry of individual peaks (a peak with a unique center corre-
sponds to its maximum), the volume is obtained by multiplying a
selected volume fraction by a factor R, which represents a propor-
tionality ratio between the total and the fractional volume, opti-
mized by Monte Carlo techniques. This minimalistic approach
warrants that the fractional volume can be chosen so as to mini-
mize the effect of overlap in complex NMR spectra. When applied
to simulated and experimental 2D in-phase peaks with different
degrees of overlap, CAKE (Monte CArlo peaK volume Estimation)
obtains an unbiased volume estimation. It is shown that, compared
with the direct summation procedure, the fractional volume ap-
proach yields rather good estimates of the peak volumes, even
for significant overlap, as long as a single contour level and its cen-
ter arising from a single peak can be detected.

2. Materials and methods

2.1. NMR data collection

The mixture of tripeptides Ala-Phe-Ala (AFA) and pyroGlu-His-
Pro (thyrotropin-releasing hormone, TRH), was prepared by dis-
solving appropriate amounts in 0.5 ml of 1H2O/2H2O (95/5 v/v) to
yield for each peptide a concentration of 0.10 mM. Salmon calcito-
nin (sCT) was dissolved in 1H2O/2H2O (95/5 v/v) to obtain a con-
centration of 1:5� 10�3 M. Perdeuterated sodium dodecyl sulfate
(SDS, Cambridge Isotope Laboratories, Woburn, MA) was added
as a solid, maintaining its concentration well above the critical mi-
celle concentration, with a peptide–SDS molar ratio of about 1:100.
1H NMR spectra, recorded at 295 K and pH 7.4, were acquired on a
Bruker DRX-600 spectrometer operating at 600 MHz, equipped
with a TCI cryoprobeTM fitted with a gradient along the Z-axis. Spec-
tra were referenced to sodium 3-(trimethylsilyl)-[2,2,3,3-2H4]pro-
pionate. Homonuclear 2D clean TOCSY spectra [18] were
recorded by standard techniques and incorporating the excitation
sculpting sequence [19] for water suppression. Five-hundred and
twelve equally spaced evolution time-period t1 values were ac-
quired, averaging four transients of 2048 points, with 6024 Hz of
spectral width. Time-domain data matrices were all zero-filled to
4096 in both dimensions, yielding a digital resolution of 2.94 Hz/
pt. Prior to Fourier transformation, time-domain filtering was ap-
plied with a Lorentz–Gauss window to both t1 and t2 dimensions.
The TOCSY experiment was recorded with a spin-lock period of
64 ms, achieved with the MLEV-17 pulse sequence [20].

2.2. Software

NMR data processing and baseline correction were obtained
with the program XWINNMR (Bruker, Biospin GmbH, Ettlingen,
2003). Standard peak integration was carried out with the
programs XWINNMR and MestRe-C [21], in which integrated
volumes are computed as the sum of all digital intensities within
a rectangular box and a tunable ellipse bounding a peak, respec-
tively. CAKE software was written in MATLAB language and was
implemented in the graphical environment of MATLAB 7.1.

2.3. The fractional peak method

2.3.1. Line shapes in two-dimensional NMR
In high-resolution NMR the frequency-domain line shapes are

closely approximated by a Lorentzian function. Neglecting coher-
ence transfer echoes, the signal envelope of a 2D experiment can
be assumed to have a biexponential form [16]

sðeÞðt1; t2Þ ¼ sðeÞð0; 0Þ expð�kðeÞt1Þ expð�kðdÞt2Þ ð1Þ

[with rates k ¼ 1=T2 in the evolution (e) and detection (d) periods].
Such time-domain envelope, decaying exponentially in both dimen-
sions, lacks cylindrical symmetry about the origin t1 ¼ t2 ¼ 0. After
a 2D Fourier transformation, the corresponding 2D absorption peak
shows a Lorentzian shape, whose sections, taken parallel to either
axis yield pure 1D absorption Lorentzian line shapes. The asymp-
totic decay is proportional to ðDxðeÞ1 Þ

�2 and ðDxðdÞ2 Þ
�2 on sections par-

allel to one of the frequency axes, while it is proportional to the
inverse fourth power in the bisecting planes [with ðDxðeÞ1 Þ and
ðDxðdÞ2 Þ, frequency offset in evolution (e) and detection (d) periods
with respect to resonances xðeÞ1 and xðdÞ2 ]. This lack of cylindrical
or elliptical symmetry has been called ‘‘star effect”, and can be re-
moved by a 2D Lorentz–Gauss transformation [16], which yields a
2D absorption mode peak shape with cylindrical or elliptical
symmetry.

By using a Lorentz-to-Gauss weighting function

hðt1; t2Þ ¼ expðþk1t1Þ expðþk2t2Þ expð�r2
1t2

1=2Þ expð�r2
2t2

2=2Þ ð2Þ

[with k1 ¼ kðeÞ; k2 ¼ kðdÞ (enhancement resolution parameters) and

r1 ¼
ffiffiffiffiffiffiffiffi

k1
t1max

q
and r2 ¼

ffiffiffiffiffiffiffiffi
k2

t2max

q
(Gaussian parameters), being

ðt1max; t2maxÞ the point at which the weighting function reaches his
maximum value]. The envelope of Eq. (1) becomes

seðt1; t2Þ ¼ seð0;0Þ expð�r2
1ðt2

1=2ÞÞ expð�r2
2ðt2

2=2ÞÞ: ð3Þ

After a 2D transformation, a Gaussian line shape is obtained

Sðx1;x2Þ ¼ sðeÞð0;0Þ 2p
r1r2

� �
exp �Dx2

1

2r2
1

� �
exp �Dx2

2

2r2
2

� �
: ð4Þ

The contours are circular for r1 ¼ r2 and elliptical for unequal
widths. It is important to underline that 2D Lorentz–Gauss transfor-
mation is useful only if the dispersive components in peaks with
mixed phase are suppressed, and this can be achieved with pure
phase spectra (i.e. either pure 2D absorption or pure 2D dispersion
peaks) [16]. It must also be emphasized that the elliptical symmetry
of Gaussian signals is obtained only in phase-sensitive displays, and
if the absolute amplitude of a Gaussian signal is calculated, a peak
shape is obtained which features again a star effect.

In most practical applications, the complete analytical expres-
sion for a discrete Fourier transform NMR spectrum is a sum of
complex, non-Lorentzian functions [4,22]. However, a true
Lorentzian spectrum is obtained if the acquisition time t2 is large,
compared to the relaxation time of the slowest decaying resonance
j ðt2 P 1=R2;jÞ, and the sweep width is large compared to the relax-
ation rate R2;j, as well as the frequency range of the spectrum (that
is, the difference between the slowest and the fastest decaying nu-
clei) [23]. Nevertheless, this discrete Fourier transform spectrum
requires correction of a pseudobaseline stemming from the first
point of the FID and of a frequency-dependent phase distortion
of the spectrum (for details see Refs. [4,22]).
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Accordingly, a phased, baseplane corrected unsaturated reso-
nance line in solution is closely approximated by a Lorentzian
function. Convolution of the time-domain with exponential, sine,
cosine functions, does not alter the line shape after transformation
[24], and preserves the frequency of its maximum. This shape has
been useful in peak fitting procedures applied to experimental data
[23]. As stated above, a 2D Lorentzian line lacks cylindrical or ellip-
tical symmetry, which can be achieved by a 2D Lorentz–Gauss
transformation. Gaussian filtering transforms a Lorentzian fre-
quency-domain function of width x0 into a Gaussian frequency-
domain function of width qx0, where q is typically less than unity,
and it has been found that q ¼ 0:66 is usually close to optimum
[25].

Bearing in mind the power of Lorentz–Gauss transformation
and the symmetry of the Gaussian line, the CAKE algorithm aims
at integrating a peak relying upon its axial symmetry, even when
in drastic overlapping conditions. The idea is that the volume can
be estimated by integrating a non-overlapping fraction of the peak
obtaining a reasonable approximation of volume in cases where
cross-peaks overlap. Therefore the major assumption in this study
is that the Lorentzian signal is transformed into a Gaussian line by
a Lorentz-to-Gauss transformation, which for in-phase peaks of
TOCSY and NOESY spectra is well-suited to maximize signal-to-
noise ratio [16].

Fig. 1a shows the contour plot of a Gaussian peak. The arbitrary
angle AbOB (a ‘‘slice” selected in a non-overlapping region and cen-
tered on the center of mass), defines the area AFi

of a peak fraction
for each i-th level bound curve; such an angle identifies a fractional
volume VF in the three-dimensional representation. Because of the
axial symmetry, for any i-th level the fractional volume VF relates
to the total volume VT as the fractional area AFi

of the i-th level re-
lates to the corresponding total area ATi

of the same level.
From the equation

VT ¼
ATi

AFi

� VF; ð5Þ

true for each couple of level bound areas, if Ri ¼
ATi
AFi
; the total volume

of a peak can be obtained by multiplying a fractional volume by the
corresponding Ri factor.

Eq. (5) is completely independent from the sequence of levels
arbitrarily chosen to represent the cross-peaks. The i-th level
should be selected so as to belong to a single peak: this is always
possible for isolated peaks while for overlapping ones this is true
for the higher levels.

It is common experience that experimental 2D peak shapes are
quite close to an ellipse. Therefore, Eq. (5) is still valid if the right
angle AbOB delimits 1/4 of the ellipse by lying on the semimajor
Fig. 1. Contour plots of simulated isolated (a) and overlapping (b) Gaussian peaks. In
overlapping region, and centered on the center of mass. In (b), AbOB and CbKD select a frac
angle AbOB selects a fractional area corresponding to 1/4 of the total area.
and the semiminor axes (Fig. 1c). In particular, by defining the el-

lipse eccentricity as e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

q
, where b and a are the semiminor

and the semimajor axes (assuming b < a), 0 6 e 6 1 and e ¼ 0 in
the case of a circle. More generally, it can be demonstrated that
Eq. (5) applies with a good approximation to eccentricity e 6 0:5,
which corresponds to a difference < 10% between axes, and a cir-
cle well approximates the ellipse. For eccentricity e > 0:5, Eq. (5)
can be safely used if one of the semiaxes is the bisector of the

polygonal AbOB. The advantage of this approach becomes apparent
for overlapping Gaussian peaks. Here, the integration is biased by
the presence of the overlapping region that affects both volumes.

In contrast, the ‘‘slice” AbOB of peak 1 (Fig. 1b), selected in a non-
overlapping region, has very little contribution, if any, from peak
2, and therefore its fractional volume can mostly be attributed to

peak 1. The same is true for CbKD slicing peak 2 (Fig. 1b), whose
fractional volume can mostly be attributed to peak 2. Therefore,

if we integrate the volume fraction identified by AbOB and calculate
the corresponding R1 constant, it should be possible to estimate the
unbiased volume of each peak. From Fig. 1b, the second most inter-
nal (highest) level of peak 1, essentially arises from peak 1, and the
effect of peak 2 on that level is negligible. Consequently, the R1

constant can be obtained from the ratio between the total area
ðAT1 Þ and the fractional area ðAF1 Þ of that level, AT1=AF1 . Analogously,

for peak 2 the fractional volume identified by C bKD can be consid-
ered, and its second highest level can be chosen to obtain the
respective factor R2 (Fig. 1b).

2.3.2. The R factor estimation
In order to estimate the R factor for a selected fraction of a peak,

an internal level attributable to the peak has to be chosen. Denoted
by AT the total level area and by AF the fractional level area, the ra-
tio R ¼ AT=AF can be obtained by a Hit-or-Miss Monte Carlo tech-
nique [26,27]. It generates uniformly distributed random points
in a known bound area (or volume) containing an unknown area
(or volume) of interest, and counts the number of hits (or points)
contained in the unknown area, with respect to the total number
of points in the known bound area. The Hit-or-Missing reasoning
is that, if points are random and uniformly distributed, the ratio
between the number of points in the unknown area with respect
to the total number points in the known bound area will corre-
spond to the ratio between the unknown area and the known
bound area. This allows an estimate of the unknown area (or
volume).

Let us denote by ðlxi; lyiÞ, with i ¼ 1;2; . . . ;N, the vertex coordi-
nates of the polygonal Plevel relative to a contour level, by ðcx; cyÞ the
(a), the arbitrary angle AbOB defines a fraction of the peak area, selected in a non-
tion of peaks 1 and 2, respectively. (c) Experimental Gaussian cross-peak. The right



Fig. 2. Contour plot of two Gaussian peaks with different degree of overlap (g):
peak 1, g ¼ 0:8 and peak 2, g ¼ 1:5. For the definition of g see text. d is the distance
between peak centers.
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coordinates of its center point, and by a1; a2 two rays with their
common origins in ðcx; cyÞ. The fractional area AF is therefore de-
fined by the intersection of the polygon Plevel and the area delim-
ited by the rays. Furthermore, let us denote by lxmin and lxmax the
minimum and maximum lxi coordinates, and by lymin and lymax

the minimum and maximum lyi coordinates, respectively. Two
pseudo random numbers xr and yr are now uniformly extracted
in the intervals ½lxmin; lxmax�, and ½lymin; lymax�, respectively. The
extraction is continued until a number NAT of points ðxr; yrÞ is inter-
nal to the polygonal Plevel. If an extracted point ðxr; yrÞ is also inside
the area AF, then the number of fractional hits NAF is augmented by
one. Of course, being the ðxr; yrÞ pairs uniformly extracted in the
rectangle ½lxmin; lxmax� � ½lymin; lymax�, the ratio R ¼ AT=AF will be esti-
mated by the ratio R ¼ NAT=NAF .

2.3.3. The Monte Carlo integration
In principle, any method is suitable to integrate the selected

fractional volume. However, the simple sum can be biased because
of the small region and the limited number of points within the se-
lected area. Accordingly, the Monte Carlo Hit-or-Miss technique
appears to be more suitable. As a known volume we assume a
quadrilateral base prism (of height h equal to the maximum of
the peak) that contains the factional volume VF to be integrated.
Points ðxr; yrÞ inside the prism base are randomly generated, and
in correspondence to each base point, a pseudo random number
Ph is uniformly extracted in the interval ½0;h�. Such extracted point
Ph is compared with the interpolated peak value pðxr; yrÞ, corre-
sponding to the extracted ðxr; yrÞ base point. If Ph is less then
pðxr; yrÞ, the extracted point is considered internal to the fractional
volume VF, and counted as a hit. At the end, the fractional peak vol-
ume is given by the ratio between the number of hits and the total
number of Ph extracted points multiplied for the known prism
volume.

Let us denote by ðpxi; pyiÞ, with i ¼ 1;2;3;4, the vertex coordi-
nates of the quadrilateral Pbase, which is the base of a prism of
height h and that contains the fractional volume VF (in particular,
px1 ¼ cx, and py1 ¼ cy, while other two points are chosen on the
a1 and a2 rays). Furthermore, let pxmin and pxmax be the minimum
and maximum pxi coordinates, and pymin and pymax the coordinates
corresponding to the minimum and maximum pyi, respectively.
Two pseudo random numbers xr and yr are uniformly extracted
in the intervals ½pxmin; pxmax� and ½pymin; pymax�, respectively. The
extraction is continued until a number NPbase

of points ðxr; yrÞ; inter-
nal to the quadrilateral of base Pbase, is obtained. For any point
internal to the quadrilateral of base Pbase, a cubic interpolation
gives the peak pðx; yÞ values in the point ðxr; yrÞ, and another pseu-
do random number q is uniformly extracted in the interval [0,1]. If
q � h 6 pðxr; yrÞ; that is, if q � h is a point internal to the fraction vol-
ume VF, the number of volume hits NV is augmented by one. If VP is
the prism volume, calculated by the software, then the fractional
volume VF is VF ¼ NV=NPbase

� VP.

3. Results and discussion

3.1. Simulations

3.1.1. Bias vs. overlapping
In order to test the algorithm, we applied CAKE to simulated

overlapping peaks of known volume. In particular, two Gaussian

peaks had center ðxi; yiÞ; equation Ai exp � ðx�xiÞ2þðy�yiÞ2

2r2
i

� �
, volume

Vi ¼ 2pr2
i Ai and a half-height width fi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2

i ln 2
q

; i ¼ 1;2; and

addition of Gaussian noise. Denoting d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ

2
q

the distance between the peak centers, it is possible to define the
parameter g � f1þf2
d as an index of the overlap, such that a large va-

lue corresponds to strong overlap.
Setting the amplitude A1 ¼ 50:0 and the dispersion 2r2

1 ¼ 2:0
to obtain V1 ¼ 100p, the A2 and 2r2

2 values were changed so as
to keep the volume V2 constant ðV2 ¼ 100pÞ, with the overlap
index being 0:8 6 g 6 1:5. The contour plots of the simulated
peaks are reported in Fig. 2 for g ¼ 0:8 (peak 1), and g ¼ 1:5
(peak 2). CAKE integration was compared with the standard
one, obtained by summing the amplitudes of all data points
within a polygonal bounding the peak. In order to establish
the best number of extractions NP in the Hit-or-Miss determina-
tion of R, and the best number of extractions NPbase

in the Hit-or-
Miss determination of the fractional volume, simulations were
conducted in the extreme limit of g ¼ 1:5 (Fig. 2, peak 2).
Fig. 3 reports the percentage of bias vs. the number of extrac-
tions NP, for different NPbase

values ranging from 100 to 1000
(right column in Fig. 3). As it can be seen, results become unbi-
ased for NP P 1500, while, except for NPbase

¼ 100 (square sym-
bol), the dependence on NPbase

is negligible. Accordingly, the
values NP ¼ 2000, and NPbase

¼ 500 appear to be a good compro-
mise between computing time and accuracy. The results of the
simulations are reported as percentage of bias vs. the degree
of overlap for a signal-to-noise ratio (SNR) of 34:9� 3:0
(Fig. 4a) and 56:1� 4:7 (Fig. 4b). The standard integration (filled
squares) was carried out by bounding the peak with an ellipse,
while for the CAKE integration (filled circles) we used
NP ¼ 2000, and NPbase

¼ 500. In both cases, each integration was
repeated 10 times. In Fig. 4a ðSNR ¼ 34:9� 3:0Þ, the standard
method gives unbiased integration values only for low overlap
index g 6 0:9. (Fig. 2, peak 1), to become totally biased for
g P 1:0. In contrast, CAKE always performs better, especially in
the range 1:0 6 g 6 1:3, which represents different degree of
overlap commonly found in 2D spectra. Overall, the fractional
method appears to be unbiased in the whole 0:8 6 g 6 1:5 range,
that is for strongly overlapping peaks and in the presence of a
low signal-to-noise ratio ðSNR ¼ 34:9� 3:0Þ. Fig. 4b reports the
same simulations with a SNR ¼ 56:1� 4:7. The standard method
performs well for g 6 0:9, with a general trend very similar to
that observed for lower SNR (Fig. 4a). In contrast, the fractional
method shows a general reduction of the bias percentage, with
values generally lower than those obtained in the previous sim-
ulation. Taken together our results suggest that, regardless of the
SNR, the CAKE method performs always better than the standard
one.



Fig. 5. CAKE integration of simulated elliptic peaks expressed as percentage of bias
in volume estimation vs. contour eccentricity ðeÞ. In (a) the fractional area was
chosen in a non-symmetric way with respect to the semimajor and the semiminor
axes of the elliptic peak. In (b) the fractional area was chosen in a symmetric way
with respect to the semimajor and semiminor axes of the elliptic peak. In both cases
the SNR ¼ 69:5� 3:2.

Fig. 4. Simulation results expressed as percentage of bias in volume estimation vs.
the degree of overlap ðgÞ. Integration was achieved with the standard ðjÞ and the
CAKE ð�Þ methods at different signal-to-noise ratios. (a) SNR ¼ 34:9� 3:0; (b)
SNR ¼ 56:1� 4:7.

Fig. 3. Percentage (%) of bias as a function of the number of extractions ðNPÞ to
estimate the R factor. For each NP we tested several NPbase

values to estimate the
volume fraction, and they are indicated with corresponding symbols on the right.
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3.1.2. Bias vs. eccentricity
Since experimental 2D-peak shapes are close to elliptic, we

tested CAKE on a simulated ellipse of known volume. In particular,

we considered peaks of equation Siðx1;x2Þ ¼ Ai
2p

r1ir2i

� �
exp � Dx2

1
2r2

1i

� �
exp � Dx2
2

2r2
2i

� �
, volume Vi ¼ Ai and contour of eccentricity

ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� minðr1i;r2iÞ

maxðr1i;r2iÞ

q
, with addition of Gaussian noise. Integration

was carried out in two ways. The fractional area was firstly
selected randomly (i.e. avoiding any symmetry), and, secondly,
symmetrically with respect to any of the semiaxes of the elliptic
peak. The random choice (Fig. 5a) produced a scattered bias
distribution between 0 and 20% for 0:8 6 e 6 0:74, with a maxi-
mum of 25% for e ¼ 0:78. For 0:8 6 e 6 0:9, which corresponds to
a ratio between semiaxes in the range of 0:45 6 b=a 6 0:60, the
average bias is 5%. This result appears to be relevant as the b/a
value corresponds to the experimental elliptic shapes usually
found in 2D spectra.

The symmetry selection of the fractional area (Fig. 5b) shows a
bias 6 10% for all eccentricity values, with the maximum at
e ¼ 0:78 reduced to 12%. For 0:8 6 e 6 0:9 the average bias is very
similar to that found for the random selection (Fig. 5a).

In conclusion, it is suggested that, for elliptical peaks, slicing
should be done symmetrically with respect to one of the semiax-
es, even though for 0:8 6 e 6 0:9, that is for most of the experi-
mental 2D peaks, the bias is essentially independent from the
selection.
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3.2. Experimental results

CAKE was initially tested on a TOCSY spectrum of a mixture of
two tripeptides, AFA and TRH. In order to have an internal refer-
ence we selected pairs of peaks, each of them stemming from a sin-
gle spin system, such that they have similar intensity within each
pair but one peak overlaps with others. In particular we chose pairs
that exemplify the correlations between the cCH2 (labeled 1 in
Fig. 6b), and between a and b protons of AFA Phe2 (labeled 2 in
Fig. 6a), and TRH His2 (labeled 3 in Fig. 6a). The magnitude of a gi-
ven TOCSY peak (governed by mixing coefficients alkðsmÞ for trans-
fer of magnetization through the spin system from spin Il to spin Ik)
depends on the topology of the spin system, the coupling constants
between pairs of spins, the efficiency of the isotropic mixing se-
quence employed, and the relaxation rate during the mixing pulse.
Although the robustness of the integration method does not de-
pend upon the experiment type or the intensity of the chosen peak,
we looked for pairs in which the peaks are expected to have similar
intensity but one of them overlaps with others. Accordingly, we se-
lected the AMX spin system of the two aromatic residues (Fig. 6a)
in AFA and TRH. From relaxation measurements (not shown) at two
different spectrometer frequencies, we estimated for both peptides
similar correlation times and relaxation rates; furthermore, the
measured 3Jab and 3Jab0 values in each spin system were identical,
therefore excluding differences in the peak intensity due to differ-
ent coupling constants; finally, the single 2Jcc0 value for the cCH2
Fig. 6. TOCSY spectrum of the mixture of AFA and THR tripeptides, acquired at 300 K w
protons of the TRH pyroGlu [labeled 1 in (b)], and a and b protons of AFA Phe2 [labeled 2
selected cross-peak pairs 1, 2 and 3 labeled as in (a) and (b). Filled squares and circles r
protons of the TRHpyroGlu warrants a similar intensity for the
two peaks within each pair.

The selected peaks were integrated with standard and CAKE
methods, and the results are reported in Fig. 6c as the Difference
percentage of volume for each cross-peak pair. For the CAKE inte-
gration we selected the most internal level belonging to a single
peak, which had elliptical symmetry with eccentricity e > 0:75.
The values obtained with CAKE for the three peak pairs are all
within 10%, giving an unbiased estimation of the difference per-
centage of the volumes in each pair. In contrast, the standard
method estimates for each peak pair values >35% for pairs 1 and
2, and 	 25% for pair 3. Surprisingly, the CAKE approach gives
for the pair 1, which lies on the TOCSY diagonal, about zero volume
difference, supporting robustness for the method, also in the pres-
ence of elliptical symmetry.

Extension of CAKE to larger polypeptides was tested on sCT, a
hormone of 32 amino acids. Fig. 7a and b report the TOCSY expan-
sions of sCT in aqueous SDS, with the AMX spin systems of Asn3

(peaks 1 and 10), Cys7 (peaks 2 and 20) and Tyr22 (peaks 3 and 30)
(Fig. 7a), and the b protons of Leu4 (peaks 4 and 40) and Arg24 (peaks
5 and 50) (Fig. 7b). According to the above considerations, the se-
lected peaks were integrated with the standard and the CAKE
methods and the results are reported in Fig. 7c. As above, the CAKE
values are all unbiased, giving an estimation of the Difference per-
centage <10%. On the contrary, the standard method gives for
peak pairs 1–4 values of bias between 30% and 40%, while pair 5
ith 64 ms mixing time. Expansions (a) and (b) report peaks originating from cCH2

in (a)], and TRH His2 [labeled 3 in (a)]. (c) Difference percentage (%) of volume in the
efer to the standard and CAKE integration methods, respectively.



Fig. 7. TOCSY spectrum of sCT in aqueous SDS acquired at 300 K with 70 ms mixing time. Expansion (a) shows peaks originating from Asn3 (peaks 1 and 10), Cys7 (peaks 2 and
20) and Tyr22 (peaks 3 and 30). Expansion (b) depicts the b protons of Leu4 (peaks 4 and 40) and Arg24 (peaks 5 and 50). (c) Difference percentage (%) of volume in the selected
cross-peak pairs 1–5 labeled as in (a) and (b). Filled squares and circles refer to the standard and CAKE integration methods, respectively.

Fig. 8. Difference percentage (%) of volume determination at different resolution for
cross-peak 2, as labeled in Fig. 6. The digital resolution was ca. 0.5, 1.1, 2.2, 4.3 and
8.6 Hz/pt. Filled squares and circles refer to the standard and CAKE integration
methods, respectively.
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shows a bias of ca. 20%. Taken together, CAKE applies efficiently to
small tripeptides as well as to larger polypeptides. We are cur-
rently testing CAKE on NOESY spectra of sCT in aqueous SDS, and
we have estimated an average time of ca. 1 min for the integration
of each cross-peak. Therefore for an average of 10–20 NOE effects
per residue, we estimated an average analysis time of about 10–
20 min per amino acid.

3.2.1. Bias vs. digital resolution
The dependence of CAKE on digital resolution was investigated

by integrating the peak pair 2 (Fig. 6c) at different digital resolution
(0.5, 1.1, 2.2, 4.3 and 8.6 Hz/pt), and integration was carried out for
each value with standard and CAKE methods (Fig. 8). The volume of
pair 2 overlapping peak (located at x1 ¼ 4:75 ppm and
x2 ¼ 3:05 ppm, Fig. 6c) was compared to the volume of the corre-
sponding single peak at x1 ¼ 4:75 ppm and x2 ¼ 3:22 ppm at its
maximum digital resolution, taken as reference. The values ob-
tained with CAKE are all within 2%, giving an unbiased estimation
of the % Difference up to 8.6 Hz/pt. On the contrary, the standard
method estimates values >10% already at 2.2 Hz/pt to become
	 25% at 8.6 Hz/pt. This finding can be explained by considering
that a low resolution drastically reduces the number of points
within an area identified by the i-th level, which, in turn, is itself
poorly defined. Therefore, the sum of points done by standard
methods is obviously biased. On the contrary, the Hit-or-Miss tech-
nique used in CAKE does not sum the existing points included in a
level bound area, but generates random points and counts the
number of ‘‘hits” (or points) that are included in the unknown area.
Since a cubic interpolation (see Section 2.3.3) is used as a deci-
sional mean to establish if the extracted point can be considered
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a ‘‘hit”, a low digital resolution could, in principle, affect the peak
profile. However, with CAKE we were able to correctly integrate
peaks with digital resolution up to ca. 30 Hz/pt.

4. Conclusions

Quantification of NMR spectra is fundamental both in meta-
bolomics/metabonomics and in the structure determination of
biomolecules. However, quantification of peaks is often hampered
by the degeneracy of the NMR resonance frequency, a factor that
aggravates with the increasing size of macromolecules and the
number of metabolites. Here we have presented the CAKE ap-
proach that uses the symmetry of a single in-phase peak (a peak
with a unique center corresponding to its maximum) to calculate
its volume. It is obtained by multiplying the fractional volume by
the R factor, a proportionality ratio between the total and the
fractional volume, both evaluated with Monte Carlo techniques.
Therefore, the peak volume can be estimated by integrating a
known fraction of the peak, and the fractional volume can be cho-
sen so as to minimize the effect of overlap in complex NMR spec-
tra. Strictly speaking CAKE applies to Gaussian peaks showing
cylindrical or elliptic symmetry. However, an NMR spectrum is
closely approximated by Lorentzian functions, which in its 2D
shape show the so-called ‘‘star effect”. It can be easily removed
by 2D Lorentz-to-Gauss transformation, which is routinely used
for in-phase experiments, like TOCSY and NOESY. Therefore, the
major assumption in this study is that the Lorentzian signal is
converted into a Gaussian line by a Lorentz-to-Gauss transforma-
tion, which is routinely applied in 2D data manipulation. Integra-
tion of simulated and experimental 2D in-phase peaks with
different degree of overlap shows that CAKE works well even
for strongly overlapping peaks. The main advantage of CAKE is
its simplicity as difficulties in its use are comparable to those pre-
sented by methods that sum all data points in a defined area. In
fact, the user only has to select a peak slice not overlapping with
other peaks therefore avoiding the guess of the total contour
shape of the peak. Furthermore, CAKE does not require any
time-consuming fitting of the peaks to functional forms, and
therefore it can be easily incorporated as a subroutine in any
NMR processing software. Tests on tripeptides and on sCT have
shown that CAKE is a powerful method for volume integration.
We are currently applying it to NOESY spectra of calmodulin, a
calcium-binding protein of 148 amino acids, and the results will
be reported in due course. The substantial independence of CAKE
on digital resolution and SNR warrants that it can be safely used
for peak integration in three-dimensional spectra. Because of its
inherent simplicity the software can be extended to automated
integration of three- and possibly higher-dimensionality NMR
spectra.
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